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Summary:
Very large displacement but small strain of very thin plates is studied using 
Kirchhoff theory. 
When plates are de  ected beyond a certain magnitude, the linear theory loses it’s 
validity and produces incorrect results. In order for an accurate large de  ection 
solution, one needs to include the coupling between axial and transverse motion, 
which is geometric non-linearity. 
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Introduction
Elasticity theory treats typically linear theory of «rigid» plates. Theory of elasticity in 

linear version can be used for  calculation of plates with small de  ection, no more than 
1/4…1/5 plate thicklness.

In these plates, de  ections normal to the mid surface of the plate are so small that 
they do not affect the deformation of the element (Samul 1982).

However, thin plates are widely used in various  elds (construction, shipbuilding, 
aircraft manufacturing).

For thin  exible slabs «load-de  ection» relationship is non-linear and hypothesis 
about non-deformability of mid-surface is unfair, because it appears tensile, compression 
and shear strains.

For large de  ection of plates and the appropriate boundary conditions, axial forces in 
mid-surface appear independently of the effect of horizontal in-plain loads (Umanski 1973).

Usually in the classic theory of elastic thin slabs used Kirchhoff’s (Volmir 1956) it is 
assumed a mid-surface plane can be used to represent the three-dimensional plate (slab) 
in two-dimensional form. The following main kinematic assumptions that are made in 
this theory (Volmir 1956):
1. Straight lines normal to mid-surface remain straight after deformation (shear strains 

are absent ; ).
2. Straight lines normal to mid-surface remain normal to the mid-surface after 

deformation ( 0z ; linear strain in z-direction is absent).
3. Thickness of the plate  does not change during deformation ( 0z ) and in mid-

surface of plate tensile, compression and shear strains are absent ( 0oo VU ).
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When the thin plates are de  ected beyond a certain magnitude, the linear theory loses 
its validity and produces incorrect results. Linear theory can predict that thede  ection of 
the member may exceed the length of the member, which is unrealistic. In order for an 
accurate large de  ection solution, one needs to include the coupling between axial and 
transverse modion (de  ection), which is geometric nonlinearity. If the edges of plate 
are allowed to move freely within the plane of underformed member, this boundary 
condition is called «stress-free».

If the edges are restricted from moving, the edges require an equivalent axial load to 
prevent motion, which is called «immovable» boundary condition.

Nonlinear de  ection theories also couple axial loads and transverse de  ections.
In the mid-surface of thin-plate there are tensile, compressive and shear forces.
From the hypothesis 2:

,0
z

W
z

      (1)

and de  ections of the thin plate does not depend on the coordinates z:

       (2)

Thus, all points lying on a vertical line have the same displacement Z. Consequently, 
to determine the vertical displacements of all point of the plate, suf  cient to determine 
the displacements of its mid-surface.

Strains and curvatures of mid-surface
Using conditions:

                 (3)

we get:

    
            (4)

and integrating over z, we get the expressions for calculating the displacement of the 
mid-surface of a de  ections:
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00 ,VU  – displacement aline X and Y coordinates axis respectively.
Strains of the points on the mid-surface of plate:
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Curvatures of mid-surface:

.

;

;

2

2

2

2

2

yx
W
y
W
x
W

y

x

      (7)

Expression for strains compatibility:   

(8)

Stress in thin slabs (plates). Stress-strain relationship.
Stress in the thin plates can be considered as the result of superposition of two states: 1) 

normal uniformely distributed over the plate thickness; 2) bending stress. Consequently, 
equations must be written for deformed state of thin plate.

Force projection equation on X and Y axis give expressions:
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The equations of moment about the axes X and Y give expressions:
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After summing the projections of all forces on the Z-axis for element of plate with 
sizes dx, dy and vision by dxdy we obtain the following expression:
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Assuming, that the strains of plate are elastic, and normal stress in the direction Z are 
very small in comparison with the normal stress parallel to the mid-surface of the plate. 
Following «strain-stress» relationships can be written: 

                (12)

Expression for calculation of bending, torsion moments and shear forces can be written:
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Basic differential equations
Substituting the expression (13) for the shear forces in the equation of equilibrium 

(11) and get the following expression:
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Equation (14) relates the de  ection of slab and vertically applied load, but contains 
additional unknown ,, yx .
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To solve the problem use equations (8) and (12):
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The introduction of the stress function (Eri-function) equations (14) and (15) form 
a system of non-linear differential equations from theory of  exible plates (Karman-
equations) (Konchakovskiy 1984):
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System of non-linear differential equations (16) together boundary conditions are 
basic system of non-linear differential equations  exible plates theory. The solution of 
system (16) is not obtained in general form, but received a number partial solutions.

Boundary conditions depend on the restricting conditions on the contour of plate.
For example for conditions:
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boundary conditions may be written in the form:

      (18)

Special computer program was developed for the calculation of thr thin plates under 
various boundary conditions using the package «MATEMATICA». 

Consider the example of calculating the square and rectangular (side ratio 1:2) 
supported on four corner columns and loaded with concentrate loads in the middle of 
each  nite element (see  g. 1).

Colculations results in the form of diagrams of de  ections are shown on the  g. 1 and 
2. Using a system of non-linear differential equations linking load and de  ection, can be 
constructed diagrams bending and torsion moments, shear forces and stress.
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Fig. 1. De  ection of square plate

Fig. 2 De  ection of rectangular plate

Conclusion
Analysis of the values of the bending moments and axial forces in thin plate can 

determine the ratio of bending and membrane stress as a function of de  ection. The 
solutions obtained are in satisfactory agreement with the results of calculating using the 
formulas of (Umanski 1973).
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