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Summary: 
The comparative analysis of the own numerical results with experimental results 
was presented for the examples of the reinforced high-strength concrete beams 
under static load. The arc-length method was used in combination with Newton-
Raphson method to trace the complete response in load-deformation space. The 
comparison of the obtained results indicates on the correctness of the assumptions 
and constitutive models of the high-strength concrete and reinforcement steel, and 
the effectiveness of the solution method. Numerical results of smeared crack patterns 
are qualitatively agreeable, for the localization, the direction and the concentration 
with experimental results. The development of strain in outer concrete layer of the 
compression zone and the development of strain for longitudinal reinforcement have 
excellent agreement in the most presented cases. The full nonlinear load-deformation 
at midspan response of the model produced compares well with the experimental 
response taken from literature. In the presented paper the usefulness of the arc-length 
method was veri  ed on a spatial numerical model of the reinforced concrete beams 
with consideration of the concrete softening during compression and tension. The 
numerical solutions obtained for the reinforced concrete beams are coherent with the 
experimentally obtained results.
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Introduction
Improved performance computing systems and the possibility of their use in the 

design of engineering structures enforces intensive development of numerical methods 
for the calculation of static and dynamic analysis of structural behavior. Numerical 
methods are the only way to achieve practically useful solutions to complex spatial 
members with materials not subjected to the laws of linear elasticity.

A high performance concrete, the concrete of high strength and also high tightness, 
includes all the components previously applied to the concrete, but in different 
proportions dosed. Detailed information regarding the classi  cation and characteristics 
of the composite cement-based materials have been presented in the works (Aïtcin 1998, 
Calderon 2009). 

The subject of work is the reinforced high-strength concrete beams considered 
as composition of materials consisting of reinforced concrete steel rods distributed 
discretely in the concrete matrix. The purpose of the work is modelling the mechanisms 
of destruction of reinforced concrete beams loaded statically, the static deformation 
processes reinforced high-strength concrete beams, taking into account the physical 
nonlinearity of structural materials. 
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Modelling of concrete
The equations of the limit surfaces for concrete are described in the papers of (Willam, 

Warnke 1975, Ottosen 1977, Klisi ski 1984, Stolarski 2004). The proposed equations 
depend on the limit surfaces of the  rst invariant of the stress tensor and the second and third 
invariant of the stress deviator. Such a description allows the most faithful approximation 
of concrete experimental results in complex stress states. In this paper, limit surface 
equation depending on  ve stress invariants in accordance with the theory of (Willam, 
Warnke 1975) and its proposal of the surface evolution law as a function of strain.

The failure criterion of concrete in a complex state of stress is described in the 
following expression:

/ 0cF f S ,                                                          (1)

in which: F  - the function of stresses conditions , ,xp yp zp  in the direction of the 
Cartesian coordinate system , ,x y z, S - failure surface dependant on the principal stresses 

1 2 3, , , where: 1 max , ,xp yp zp , 3 min , ,xp yp zp  and 1 2 3  
and  ve strength parameters: cf  - uniaxial compressive strength causing crashing, tf  - 
uniaxial tension strength causing cracking, cbf  - ultimate biaxial compressive strength 
causing crashing, 1f  - ultimate compressive strength for a state of biaxial compression 
superimposed on hydrostatic stress state a

h  and 2f  - ultimate compressive strength for 
a state of uniaxial compression superimposed on hydrostatic stress state a

h .
The description failure of concrete is de  ned in four domains of stresses: compression 

– compression – compression, when 1 2 30 , tension – compression – 
compression, as 1 2 30 , tension – tension – compression, when 1 2 30  
and tension – tension – tension, as 1 2 3 0 . 

In each range of strain, independent functions 1 2 3 4, , ,F F F F  and 1 2 3 4, , ,S S S S  describe 
the function state of stresses F  and the failure surface S . These functions in each of the 
state of stress are presented by (Smarzewski 2011).

Concrete limit surface with evolution laws is used as a criterion of destruction according 
to the following interpretation. The material is destroyed if the Eq. (1) is ful  lled. The state 
of failure can be distinguished as the state of cracking, if any principal stress is tensile, or 
the state of crushing, if all principal stresses are compressive. Safe working conditions 
describe the stress state interpreted as the elastic state inside the surface. Evolution of the 
limit surface is determined by the fallowing proposition of hardening or softening laws. 

The essence of this proposition is shown in Figure 1. The stress-strain function for the 
uniaxial compressive phase of elastic-plastic strengthening and softening is con  rmed in 
the experimental observations, indicating much larger the limit strains in the structural 
member than in the control plain concrete samples. 

Interpreting the numerical results of the high-strength reinforced concrete beams, it 
was observed that the use of the equations describing relationships between strains and 
stresses proposed in (Model Code 90 1995) leads to a signi  cant decrease in structural 
de  ection. On the basis of numerical experiments in comparison with experimental 
results (Kami ska 1999, 2002) the concept of the behavior of high-strength concrete 
with uniaxial compression and tension in reinforced concrete was included in proposed 
model of concrete behaviour. 
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Figure 1. Assumed stress-strain relationship for concrete for uniaxial
tension (a) and compression (b)

Stress-strain curve for tensile concrete (Fig. 2a) is linear up to the tensile strength tf .
It is assumed that the tensile deformation modulus is equal to the compressive one. After 
reaching tf  the cracks begin to develop. The brittle fracturing suddenly decrease the stress 
to a value greater or equal than c tT f . Value of parameter cT  should be chosen from the range 
0.6 1cT . The stiffening effect, included by founding a gradual, soft decrease of tensile 
strength to zero is described by strains equal to 0.8 ‰ if cT = 0.6 and to 1.4 ‰ if cT = 1. 

The limit of elastic phase in the compressive concrete in relation to the reinforcement 
ratio was determined (Fig. 2b). For a reinforcement ratio greater than 1.5 % it was 
assumed linear stress-strain diagram to the level of 0.7 ,cf . Then begins the phase of 
elastic-plastic strengthening with linear increase in stress up to the uniaxial compressive 
strength ,cf  and after then the stresses in concrete are decrease to 0.80 cf  at the limit 
strain cu . For the proposed model strain 1c = 6 ‰ at the uniaxial compressive strength 

cf  and the limit compression strains cu = 12 ‰ were assumed.
More slanted  curve for the high-strength concrete is not always re  ected in the 

behaviour of reinforced concrete elements. Experimental results (Lambrotte et al. 1990, Taerwe 
1991, Bernardi 1999, Kami ska 1999) showed that low ductility concerns high-strength 
concrete in the structural elements is not justi  ed. In such members, which were damaged by 
the crushing of concrete compression zone, the strains of concrete reached up to 6-12 ‰, and 
were appropriately twice the damaging strains registered on the plain concrete samples. 

In the numerical analysis the hexahedral elements were applied for the concrete. Finite 
element is de  ned by the isotropic properties of the material, and eight nodes with three 
degrees of freedom in each of them, as the displacements of nodes in three-dimensional 
orthogonal local coordinate system. In each  nite element at all points of the numerical 
integration the strains and stresses are calculate. Smeared crack model provides a description 
of the cracking at any point numerical integration in three directions perpendicular to the 
principal stresses. Crack formation is described by proposed model of concrete. In the 
graphical representation the results are presented in cracking outline form of a circle shape in 
the direction perpendicular to the principal stress. In the state of cracking or crushing concrete 
for the numerical balance in the  nite element is added a small value of stiffness. 
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The matrix of elasticity for an isotropic material cD  is represented in the form:

(2)

where: cE  - modulus of elasticity of concrete, c  - Poisson’s ratio.

In the state of cracking and crushing the matrix is   adapted to the state of the damage. 
In numerical modeling, it is necessary to take account of the characteristics of concrete 
description after they have formed. The parameter t  is introduced as a multiplier for 
reducing shear transfer causing slip in the plane perpendicular to the cracks surface. The 
relationship between stress and strain of the cracked material in one plane is written in 
the form of a matrix:

                     

 (3)

 
     

Graphical interpretation of the module weakness tR  and the multiplier for amount of 
tensile stress relaxation cT  is shown in Figure 2a. When cracks closing in the matrix ck

cD ,
 shear parameter c  is introduced:

              (4)
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Stiffness matrix for concrete cracked in two and three dimensions is written in the 
form:

              (5)

and if the cracks are closed in two or three planes, the relationship is expressed in 
a matrix form Eq. (4). Opening or closing of cracks at the point of numerical integration 
depends on the sign of the cracking strains. 

Modelling of steel
The simpli  ed uniaxial model of steel for the reinforcing bars is used. The elastic-

plastic material model with linear hardening, of identical stress-strain  characteristics for 
the tension and compression. Spatial spar element, with two nodes with three degrees of 
freedom, was applied in the modeling of steel bars. Moreover, linear elastic model was 
assumed for the steel plates located in support and concentrated external force areas. To 
modeling of steel plates the hexahedral elements were applied. 

Modelling of high-strength concrete beams
Spatial mesh steel rebar  nite element was associated with the mesh of the concrete 

 nite element by modeling the compatibility of displacements at common nodes. For 
such a mesh system the stiffness matrix is the sum of the  nite element stiffness matrices 
for concrete and for reinforcement steel. In support areas steel plates were modeled as 
nodal imparting forces on steel rollers allow free rotation of the beam in the plane of 
bending. External concentrated force is also applied through the steel plate. Uniform 
distribution of forces at the nodes in the direction of the transverse symmetry axis of the 
steel plate was assumed.

The numerical model of spatial beams used dimensions and properties of the material 
as rectangular beams BP-1b and BP-2b investigated by (Kami ska 1999). Dimensions of 
beams with reinforcement and loading arrangements are shown in Fig. 2.
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Fig. 2. Dimensions and cross-section of BP beams with reinforcement and loading arrangements

The parameters of constitutive concrete model are given for the beams BP-1b / BP-
2b, respectively. High-strength concrete is de  ned by the uniaxial compressive strength 

cf = 72.8 / 73.3 MPa, modulus of elasticity cE = 34 / 35.8 GPa, tensile uniaxial strength 
tf = 4.73 / 5.06 MPa, Poisson’s ratio c= 0.15, density c= 2600 kg/m3, compressive 

strain at the strength stress level 1c = 6 ‰, ultimate compressive strain cu= 12 ‰, shear 
transfer coef  cients for an open crack t= 0.5 and shear transfer coef  cients for the 
closed crack c= 0.99. 

The appropriate material parameters for the steel bars of 16/ 10/ 6 mm 
diameters are as follows: modulus of elasticity sE = 196 / 194 / 201 GPa, yield stress 

yf = 437 / 420 / 353 MPa, tensile uniaxial strength stf = 713 / 624 / 466 MPa, limit strain 
at the yield stress su= 106 / 116 / 75 ‰, modulus of plastic deformation TE = 2659.7 / 
1792.1 / 1542.8 MPa, Poisson’s ratio s = 0.3 and density s = 7800 kg/m3. 

Supporting and load transferring steel plate are de  ned by modulus of elasticity sE
= 210 GPa, Poisson’s ratio s= 0.3 and density s = 7800 kg/m3. Having regard the 
longitudinal symmetry elements one half of the beams was modeled.
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Methods of numerical solutions of the equilibrium equations 

Newton-Raphson method with adaptive descent
Newton-Raphson method, shown graphically in Figure 3, is an iterative process of 

solving nonlinear equations
,                                                 (6)

                   ,                                                    (7)

where: T
iK  - tangent stiffness matrix, i  - index corresponding to the number of the 

incremental step, aF  - generalized load vector, nr
iF  - vector of restoring loads representing 

the element internal loads in the discretised system.

Matrix T
iK and vector nr

iF  are calculated on the basis of the displacement vector iu .
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Fig. 3. Newton-Raphson method

Adaptive descent method presented in the work by (Eggert et al. 1991) is based on 
the change of solution path approximating the limit point and reversing along the secant 
until obtaining t he convergence of numerical solution.

The stiffness matrix in Newton-Raphson equation Eq. (6) is described as a sum of 
two matrixes:

1T S T
iK K K ,                                              (8)

SK - secant stiffness matrix, TK - tangent stiffness matrix,  - adaptive descent 
parameter.

The method is based on the agreement adaptive descent parameter  in equilibrium 
iteration. The secant stiffness matrix is generated in the numerical method as a result 
of solving nonlinear tasks concerning material plasti  cation, construction stiffness with 
large deformations or concrete crushing.
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Arc-length method 
In the method of numerical Cris  eld’s arc-length (Cris  eld 1983), presented in Fig. 3 

equation Eq. (6) is dependent on load parameter :

.                                                 (9)
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Fig. 3. Cris  eld’s arc-length method

In this procedure the variable load parameter  is searched in the range 1 1. 
In the incremental substep the equation has the following form:

,                                 (10)
 - incremental load parameter.

On the basis of equation Eq. (10) the vector of incremental displacement iÄu  consists 
of two components described as follows

,                                               (11)

I
iÄu  - vector of displacement increment caused by a unit load parameter, II

iÄu  - vector 
of displacement increment in the Newton-Raphson method.

Displacement vectors are de  ned as

,                                                   (12)
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 ,                                   (13)

The incremental load parameter  is de  ned from the arc length equation:

 ,                                            (14)

- scaling factor, n- current step number,  - the sum of all displacement increments 
 in the current iteration step.
The work (Forde, Stiemer 1987) presents a general procedure of calculating the 

parameter  based on ensure orthogonality:

,                                         (15)

ir  - unbalanced parameter obtained by scalar multiplication of normal and tangential 
vector.

The  nale vectors are updated according to:

,                                        (16)

1 0 in ,                                           (17)

Iterations stop at the moment of obtaining the desired convergence of the numerical 
solution.

Numerical analysis high-strength concrete beams

Cracking analysis
The images of real cracks in full BP beams are presented against numerical images 

of smeared cracks for the left half of the beams with the same values of load in Figure 4.
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Fig. 4. Experimental and numerical images of cracking BP beams

All the obtained numerical results are in qualitative agreement with experimental 
results in terms of their location, direction and concentration. In case of Newton-
Raphson method with adaptive descent slightly larger zone of smeared cracks was 
observed. Due to the lack stirrups in the model and experimental BP-1b beams with low 
reinforcement and BP-2b with a higher degree of reinforcement in the section of pure 
bending, arrangement of cracks is arbitrary. 
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Strain analysis
For the observation of strain changes in concrete, depending on the load, is assumed 

at the upper edge the point of the mid span of beams BP. The development of strain in the 
outer layer of the concrete compression zone are shown in Figure 5.

Fig. 5. Comparison of strains in outer layer of concrete in mid span of BP beams
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Fig. 6. Comparison of strains in in longitudinal bar in mid span of BP beams

The registration of strain changes in tensile reinforcement bar depending on the load 
level is performed in the mid span cross-section of the beams, Figure 6.

In case of the experimental curve BP-1b also shows the unloading branch member. The 
numerical results are almost identical in the linear-elastic range as the experimental data.

Load capacity and displacement analysis
Nonlinear load-displacement in the mid span of beams received in numerical analysis 

in comparison with experimental results are shown in the Figure 7.
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Fig. 7. Comparison of load-displacement at mid span of BP beams

The incremental-iterative methods, both the adaptive descent and the arc-length, give 
satisfactory numerical results, qualitatively consistent with the experiments. The study 
on reinforced concrete beams by e.g. (Fabbrocino, Pecce 1999, Ashour 2000, Rashid, 
Mansur 2005), using precise measuring apparatus show that the effects of cracks in the 
tension zone are not entirely compensated by the elastic properties of steel and plastic 
properties in the concrete compression zone. Therefore, softening effects are observed on 
the curve load-displacement as a sudden load capacity drop. These results in presented 
numerical calculations are possible to obtained using arc-length calculation algorithm 
which allows to generate a complete load-displacement path with local and global 
stiffness softening of the structure. In addition, the arc-length method is characterized 
by high ef  ciency, because a variable increment step load and properly selected the 
arc-length parameters provides signi  cant reduction in computation time and makes it 
possible to obtain very precise numerical solution.
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Conclusions
In the modeling of reinforced concrete as simple as possible the  nite elements should 

be used in order to obtain an accurate solution in accepted time. Moreover, especially 
important is modeling of steel plates in areas of support and load application re  ecting 
the real boundary conditions. 

The use of  the incremental-iterative arc-length method allows to obtain a complete 
path of load-de  ection with both local and global softening. Moreover, the method is 
characterized by high ef  ciency; a variable step of load increments and properly selected 
arc-length parameters guarantee shortening the time of numerical computing, and 
additionally very precise solutions. In the presented paper the usefulness of the arc-length 
method was veri  ed on a spatial numerical model of the reinforced concrete beams with 
consideration of the concrete softening during compression and tension. The numerical 
solutions obtained for the reinforced concrete beams are coherent with the experimentally 
obtained results. This fact indicates the correctness of concrete and reinforcement steel 
constitutive models and detailed parameters determined these models. 
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